MAG2/Grind Resistant (GR) Sensor

The Sensys Networks VDS240 Wireless Vehicle Detection System uses wireless magneto-resistive sensors to detect the presence and movement of vehicles. The sensors – installed in holes cored in the roadway and covered with epoxy – transmit detection data in real-time via low-power radio technology to a nearby Sensys Networks access point. Vehicle detections are further relayed to a traffic signal controller, remote traffic management center, or other system.

The new MAG2/GR sensor developed by Sensys Networks utilizes the next generation of RF chipsets and circuitry. The MAG2 sensors are installed flush with the roadway surface in plastic shells. The plastic shells enable the removal and replacement of sensors during roadway milling operations. The GR sensors are installed at depth of up to 7 inches below the top of the roadway surface without plastic shells. Sensors installed at these depths do not have to be removed and replaced during most roadway milling operations.

In typical traffic management applications, a sensor is placed in the middle of a traffic lane to detect the presence and passage of vehicles. Vehicle speeds and length are measured by two sensors installed in the same lane with the exact distance between them configured in software. The recommended distance between sensors depends on the range of expected speeds to be measured: for typical freeway applications, a separation of 20 to 24 feet (6.1 to 7.3 meters) is recommended; for typical arterial applications, a separation of 10 to 12 feet (3.1 to 3.7 meters) is preferred.

Advanced Magnetometer-Based Vehicle Detection.
The state-of-the-art magneto-resistive sensing devices in each wireless sensor measure the x-, y-, and z-axis components of the Earth’s magnetic field at a 128 Hz sampling rate. As vehicles come within range, changes in the x, y, or z axes of the measured magnetic field become apparent. When no vehicles are present, sensors continually measure the background magnetic field to estimate a reference. Each sensor automatically self-calibrates to the local environment, and to any long-term variations of the local magnetic field, by allowing this reference value to change over time.

Types of MAG2/GR Sensors:

VSN240-F-2
- Flush-mount wireless sensor for in-pavement installation
- For all freeway, arterial, and signal control applications

VSN240-T-2
- Flush-mount wireless sensor for in-pavement installation
- For signal control applications only

VSN240-F-GR
- For up to 7” depth in-pavement installation
- For all freeway, arterial, and signal control applications

VSN240-T-GR
- For up to 7” depth in-pavement installation
- For signal control applications only

Functions / Features

Lower power consumption
3-axis magnetometer for vehicle detection
- 128 Hz sampling rate
- Count and presence detection modes
- Modes for bicycle and motorcycle detection

Flush mount or up to 7” depth in-pavement installation with no wires or lead-in cabling

Fast and simple installation
- Installs in less than 10 minutes in small hole using a hammer or core drill
 - 4” (10 cm) diameter; a maximum of 7” (17.8 cm) deep
 - Covered with fast-drying epoxy
- Minimal lane closure time
- No saw cuts

Expected 10 year battery life
- Rugged mechanical design
- Auto-calibration

Reliable 2-way radio communications with access point
- Uniquely addressable and configurable
- Firmware can be upgraded over-the-air

Readily deployed where other systems cannot be used
- Split roadways
- High water tables
- Damaged pavement
Functional Specifications

<table>
<thead>
<tr>
<th>detection technique</th>
<th>3-axis magnetic field sensing</th>
</tr>
</thead>
<tbody>
<tr>
<td>sampling rate</td>
<td>128 Hz</td>
</tr>
</tbody>
</table>
| programmable vehicle detection parameters (mode B only) | • Z-axis detect threshold (mG)
• Z-axis undetect threshold (mG)
• X-axis undetect threshold (mG)
• onset filter (ms)
• holdover (ms)
• auto-recalibration timeout (secs) |
| over-the-air protocol | Sensys Networks NanoPower (SNP) protocol (TDMA) |
| physical layer protocol | EEE 802.15.4 PHY |
| modulation | Direct Sequence Spread Spectrum Offset Quadrature Phase-Shift Keying (DSSS O-QPSK) |
| transmit/receive bit rate | 250 kbps |
| frequency band | 2400 to 2483.5 MHz (ISM unlicensed band) |
| frequency channels | 16 |
| channel bandwidth | 2 MHz |
| antenna type | microstrip patch antenna (mounted below top surface of sensor) |
| antenna field of view | ±60° (azimuth & elevation) |
| nominal output power | +3 dBm |
| spurious emissions | • 30 - 1000 MHz: < -36 dBm
• 1 - 12.75 GHz: < -30 dBm
• 1.8 - 1.9 GHz: < -44 dBm
• 5.15 - 5.3 GHz: < -47dBm |
| typical receive sensitivity | -101 dBm (PER = 1%) |
| saturation (max input level) | ≥ 10 dBm |

Sensor Modes

<table>
<thead>
<tr>
<th>mode</th>
<th>application</th>
<th>description</th>
</tr>
</thead>
</table>
| B (event)| count stations; advance detection | • sends timestamped ON and OFF detection events using configurable detection parameters
• not supported by VSN240-T |
| E (idle) | status reporting | disables magnetometer and sends sensor hardware and software version information |
| STOPBAR-# (presence detection) | stop bar detection; ramp management | sends timestamped ON and OFF detection events using pre-configured detection parameters
• 16 different stop bar detection modes can be selected
• recommended stop bar detection modes for specific applications: |
| STOPBAR-0 | bicycles/scoters |
| STOPBAR-2 | motorcycles |
| STOPBAR-5 | passenger vehicles (normal recalibration) |
| STOPBAR-7 | passenger vehicles (fast recalibration) |
| STOPBAR-14 | light rail |

Power, Physical, & Environment

| power supply | • non-replaceable primary Li-SOCl₂ 3.6v battery pack
• 8.5 Ah (nominal capacity) |
| dimensions | 2.9” x 2.9” x 2.2” (7.4 cm x 7.4 cm x 5.6 cm) |
| weight | 0.47 lbs/0.213 kg (without shell) |
| environmental| • designed for in-pavement mounting
• NEMA Type 6P enclosure
• IP68 ingress protection |
| operating temp | -40°F to 176°F/-40°C to +85°C |

Compliance

safety
2006/95/EC

EMC
• FCC: This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
• 2004/108/EC

Sensys Networks and the Sensys Networks logo are trademarks of Sensys Networks, Inc. All other trademarks are the property of their respective owners. Information contained herein is believed to be reliable, but Sensys Networks makes no warranties as to its accuracy or completeness. Copyright © 2014 Sensys Networks, Inc. • ALL RIGHTS RESERVED • P/N 153-240-100-008 Rev B